世界农化网中文网报道: 植物育种学家每次会栽培数千个潜力品种;直到现在,对植物关键特征的观察都是人工完成的。在一项新的研究中,在对潜力品种的测试里,无人驾驶飞行器,或无人驾驶飞机,可成功地用来远程评估和预测大豆成熟时间。使用无人机来完成这项工作可以大大减少评估新作物所需的工时。
当植物育种学家开发新的作物品种时,他们会种植很多植物,而且他们都需要反复检查。
“农民可能会有100英亩土地,只种植一个大豆品种,而植物育种学家可能会在10英亩土地上种植1万种潜在品种。农民可以快速地确定田地里的单一大豆品种什么时候才能收割。但是,在秋天,植物育种学家必须反复走过实验田,以确定每种潜在作物的成熟时间,” 伊利诺伊大学大豆育种家布瑞恩 迪尔思解释说。
“我们每三天都必须进行检查,”硕士生内森 施米茨补充道。“在一年中的收获季节里,这要花费我们大量的时间。而且田地里有时候很热,有时候又很泥泞。”
为了简化工作,一个跨学科的研究团队,包括植物育种学家,计算机科学家,工程师和地理信息专家都转向无人驾驶飞行器——俗称无人机领域的研究。
“当无人机能够为我们所用,我们将研究如何才能将这项新技术应用到育种领域。这是首次尝试,我们试图把复杂的事情简单化,”迪尔斯说。
其中一个目标是,利用装载在无人机上的摄像头,以及复杂的数据和成像分析技术,预测蚕豆的成熟时间。“我们利用多光谱成像技术,”施米茨解释说。“我们在程序中建立一个方程式,以便获取反射在植物上的光频变化。颜色的变化就是我们如何将成熟与不成熟植物区分开的依据。”
研究人员开发了一种算法,将无人机获取的图像与用传统方法(通过田间研究)衡量的蚕豆成熟度数据进行对比。我们用无人机进行的成熟度预测非常接近我们田间研究的记录,迪尔斯指出。
通过模型做出的预测准确率达到93%,但是,迪尔斯说,如果没有无人机自身固有的局限性,他们可能会做的更好。例如,无人机只能在阳光明媚和风力较小的日子里飞行。
对于它们在提高农业领域的效率和准确率方面,无人机得到了越来越多的认可,尤其是2016年8月新的FAA(联邦航空局)规则生效后,本研究是首批利用无人机优化育种实践的研究。迪尔斯指出,该应用对于大型育种企业非常实用,它们每年要测试数十万个潜在品种。如果利用这项技术,能够让植物育种学家节省时间和精力,新品种就可以被更快地开发出来供农民使用,这是一个受欢迎的改进。
论文,“基于无人机平台,提升大豆估产方法和植物成熟度预测的开发方法”已经发表在《环境遥感》期刊上。除了迪尔斯和施米茨,Neil Yu, Liujun Li, Lei Tian, 和 Jonathan Greenberg也是该论文的共同作者,他们都来自伊利诺伊大学。
当植物育种学家开发新的作物品种时,他们会种植很多植物,而且他们都需要反复检查。
“农民可能会有100英亩土地,只种植一个大豆品种,而植物育种学家可能会在10英亩土地上种植1万种潜在品种。农民可以快速地确定田地里的单一大豆品种什么时候才能收割。但是,在秋天,植物育种学家必须反复走过实验田,以确定每种潜在作物的成熟时间,” 伊利诺伊大学大豆育种家布瑞恩 迪尔思解释说。
“我们每三天都必须进行检查,”硕士生内森 施米茨补充道。“在一年中的收获季节里,这要花费我们大量的时间。而且田地里有时候很热,有时候又很泥泞。”
为了简化工作,一个跨学科的研究团队,包括植物育种学家,计算机科学家,工程师和地理信息专家都转向无人驾驶飞行器——俗称无人机领域的研究。
“当无人机能够为我们所用,我们将研究如何才能将这项新技术应用到育种领域。这是首次尝试,我们试图把复杂的事情简单化,”迪尔斯说。
其中一个目标是,利用装载在无人机上的摄像头,以及复杂的数据和成像分析技术,预测蚕豆的成熟时间。“我们利用多光谱成像技术,”施米茨解释说。“我们在程序中建立一个方程式,以便获取反射在植物上的光频变化。颜色的变化就是我们如何将成熟与不成熟植物区分开的依据。”
研究人员开发了一种算法,将无人机获取的图像与用传统方法(通过田间研究)衡量的蚕豆成熟度数据进行对比。我们用无人机进行的成熟度预测非常接近我们田间研究的记录,迪尔斯指出。
通过模型做出的预测准确率达到93%,但是,迪尔斯说,如果没有无人机自身固有的局限性,他们可能会做的更好。例如,无人机只能在阳光明媚和风力较小的日子里飞行。
对于它们在提高农业领域的效率和准确率方面,无人机得到了越来越多的认可,尤其是2016年8月新的FAA(联邦航空局)规则生效后,本研究是首批利用无人机优化育种实践的研究。迪尔斯指出,该应用对于大型育种企业非常实用,它们每年要测试数十万个潜在品种。如果利用这项技术,能够让植物育种学家节省时间和精力,新品种就可以被更快地开发出来供农民使用,这是一个受欢迎的改进。
论文,“基于无人机平台,提升大豆估产方法和植物成熟度预测的开发方法”已经发表在《环境遥感》期刊上。除了迪尔斯和施米茨,Neil Yu, Liujun Li, Lei Tian, 和 Jonathan Greenberg也是该论文的共同作者,他们都来自伊利诺伊大学。